Skip to content

qttools.datastructures.dsdbcoo#

[docs] module qttools.datastructures.dsdbcoo

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
# Copyright (c) 2024 ETH Zurich and the authors of the qttools package.

from typing import Callable

import numpy as np

from qttools import NDArray, sparse, xp
from qttools.comm import comm
from qttools.datastructures.dsdbsparse import DSDBSparse
from qttools.kernels.datastructure import dsdbcoo_kernels, dsdbsparse_kernels
from qttools.profiling.profiler import Profiler
from qttools.utils.mpi_utils import get_section_sizes

profiler = Profiler()


def _upper_triangle(rows: NDArray, cols: NDArray) -> tuple[NDArray, NDArray, NDArray]:
    """Returns upper triangular rows and cols."""
    mask = cols < rows
    temp = rows[mask]
    rows[mask] = cols[mask]
    cols[mask] = temp
    return rows, cols, mask


class DSDBCOO(DSDBSparse):
    """A Distributed Stack of Distributed Block-accessible COO matrices.

    Note
    ----
    It is the caller's responsibility to ensure that the data is
    distributed correctly across the ranks.

    Parameters
    ----------
    data : NDArray
        The local slice of the data. This should be an array of shape
        `(*local_stack_shape, local_nnz)`.
    rows : NDArray
        The local row indices of the COO matrix.
    cols : NDArray
        The local column indices of the COO matrix.
    block_sizes : NDArray
        The size of each block in the sparse matrix.
    global_stack_shape : tuple or int
        The global shape of the stack. If this is an integer, it is
        interpreted as a one-dimensional stack.
    return_dense : bool, optional
        Whether to return dense arrays when accessing the blocks.
        Default is True.
    symmetry : bool, optional
        Whether the matrix is symmetric. Default is False.
    symmetry_op : callable, optional
        The operation to use for the symmetry. Default is
        `xp.conj`.

    """

    def __init__(
        self,
        data: NDArray,
        rows: NDArray,
        cols: NDArray,
        block_sizes: NDArray,
        global_stack_shape: tuple,
        return_dense: bool = True,
        symmetry: bool | None = False,
        symmetry_op: Callable = xp.conj,
    ):
        """Initializes a DSDBCOO matrix."""
        super().__init__(
            data,
            block_sizes,
            global_stack_shape,
            return_dense,
            symmetry=symmetry,
            symmetry_op=symmetry_op,
        )

        self.rows = xp.asarray(rows, dtype=xp.int32)
        self.cols = xp.asarray(cols, dtype=xp.int32)

        self._diag_inds = xp.where(self.rows == self.cols)[0]
        self._diag_value_inds = self.rows[self._diag_inds]
        ranks = dsdbsparse_kernels.find_ranks(self.nnz_section_offsets, self._diag_inds)

        self.rows_nnz = (
            self.rows[
                self.nnz_section_offsets[comm.stack.rank] : self.nnz_section_offsets[
                    comm.stack.rank + 1
                ]
            ]
            + self.global_block_offset
        )
        self.cols_nnz = (
            self.cols[
                self.nnz_section_offsets[comm.stack.rank] : self.nnz_section_offsets[
                    comm.stack.rank + 1
                ]
            ]
            + self.global_block_offset
        )

        if not any(ranks == comm.stack.rank):
            self._diag_inds_nnz = None
            self._diag_value_inds_nnz = None
            return
        self._diag_inds_nnz = (
            self._diag_inds[ranks == comm.stack.rank]
            - self.nnz_section_offsets[comm.stack.rank]
        )
        self._diag_value_inds_nnz = (
            self._diag_value_inds[ranks == comm.stack.rank]
            - self._diag_value_inds[ranks == comm.stack.rank][0]
        )

    @profiler.profile(level="debug")
    def _get_items(self, stack_index: tuple, rows: NDArray, cols: NDArray) -> NDArray:
        """Gets the requested items from the data structure.

        This is supposed to be a low-level method that does not perform
        any checks on the input. These are handled by the __getitem__
        method. The index is assumed to already be renormalized.

        You will get an array of the expected shape, padded with zeros
        where requested elements are not in the matrix.

        Note
        ----
        Note that in stack distribution, every rank in the
        block-communicator will return either zeros or the requested
        data if present.

        Parameters
        ----------
        stack_index : tuple
            The index in the stack.
        rows : NDArray
            The row indices of the items.
        cols : NDArray
            The column indices of the items.

        Returns
        -------
        items : NDArray
            The requested items.

        """
        # We need to shift the local rows and cols to the global
        # coordinates.

        if self.distribution_state == "stack":
            self_rows = self.rows + self.global_block_offset
            self_cols = self.cols + self.global_block_offset
        else:
            self_rows = self.rows_nnz
            self_cols = self.cols_nnz

        if self.symmetry:
            # find items in lower triangle and send them to upper triangle
            rows, cols, mask_transposed = _upper_triangle(rows, cols)
            inds, value_inds, max_counts = dsdbcoo_kernels.find_inds(
                self_rows,
                self_cols,
                rows[~mask_transposed],
                cols[~mask_transposed],
            )
            value_inds = (~mask_transposed).nonzero()[0][value_inds]
            inds_t, value_inds_t, max_counts_t = dsdbcoo_kernels.find_inds(
                self_rows,
                self_cols,
                rows[mask_transposed],
                cols[mask_transposed],
            )  # need to split the function call into two, because we might want to get (i,j) and (j,i) at the same time
            value_inds_t = mask_transposed.nonzero()[0][value_inds_t]
            if max_counts not in (0, 1) or max_counts_t not in (0, 1):
                raise IndexError(
                    "Request contains repeated indices. Only unique indices are supported."
                )
        else:
            inds, value_inds, max_counts = dsdbcoo_kernels.find_inds(
                self_rows,
                self_cols,
                rows,
                cols,
            )
            if max_counts not in (0, 1):
                raise IndexError(
                    "Request contains repeated indices. Only unique indices are supported."
                )

        data_stack = self.data[*stack_index]

        arr = xp.zeros(data_stack.shape[:-1] + (rows.size,), dtype=self.dtype)

        if self.symmetry:
            arr[..., value_inds] = data_stack[..., inds]
            arr[..., value_inds_t] = self.symmetry_op(data_stack[..., inds_t])
        else:
            arr[..., value_inds] = data_stack[..., inds]
        return xp.squeeze(arr)

    @profiler.profile(level="debug")
    def _set_items(
        self, stack_index: tuple, rows: NDArray, cols: NDArray, value: NDArray
    ) -> None:
        """Sets the requested items in the data structure.

        This is supposed to be a low-level method that does not perform
        any checks on the input. These are handled by the __setitem__
        method. The index is assumed to already be renormalized.

        You need to provide an array of the expected shape. The sparsity pattern is not
        modified. You need to provide
        the values that are on the current rank. The sparsity pattern is
        not modified.

        If you are trying to set a value that is not in
        the matrix, nothing happens.

        Parameters
        ----------
        stack_index : tuple
            The index in the stack.
        rows : NDArray
            The row indices of the items.
        cols : NDArray
            The column indices of the items.
        value : NDArray
            The value to set.

        """

        if self.distribution_state == "stack":
            self_rows = self.rows + self.global_block_offset
            self_cols = self.cols + self.global_block_offset
        else:
            self_rows = self.rows_nnz
            self_cols = self.cols_nnz

        if self.symmetry:
            # items of upper triangle of the matrix
            rows, cols, mask_transposed = _upper_triangle(rows, cols)

        # We need to shift the local rows and cols to the global
        # coordinates.
        inds, value_inds, max_counts = dsdbcoo_kernels.find_inds(
            self_rows,
            self_cols,
            rows,
            cols,
        )
        if max_counts not in (0, 1):
            raise IndexError(
                "Request contains repeated indices. Only unique indices are supported."
            )

        if len(inds) == 0:
            # Nothing to do if the element is not in the matrix.
            return

        value = xp.asarray(value)
        if value.ndim == 0:

            self.data[*stack_index][..., inds] = value
            if self.symmetry:
                self.data[*stack_index][..., inds[mask_transposed]] = self.symmetry_op(
                    value
                )

            return

        self.data[*stack_index][..., inds] = value[..., value_inds]
        if self.symmetry:
            self.data[*stack_index][..., inds[mask_transposed]] = self.symmetry_op(
                value[..., value_inds[mask_transposed]]
            )

        return

    @profiler.profile(level="debug")
    def _get_block_slice(self, row: int, col: int) -> slice:
        """Gets the slice of data corresponding to a given block.

        This handles the block slice cache. If there is no data in the
        block, an `slice(None)` is cached.

        Parameters
        ----------
        row : int
            Row index of the block.
        col : int
            Column index of the block.

        Returns
        -------
        block_slice : slice
            The slice of the data corresponding to the block.

        """
        block_slice = self._block_config[self.num_blocks].block_slice_cache.get(
            (row, col), None
        )

        if block_slice is None:
            # Cache miss, compute the slice.
            block_slice = slice(
                *dsdbcoo_kernels.compute_block_slice(
                    self.rows, self.cols, self.local_block_offsets, row, col
                )
            )
            self._block_config[self.num_blocks].block_slice_cache[
                (row, col)
            ] = block_slice

        return block_slice

    @profiler.profile(level="debug")
    def _get_block(
        self, arg: tuple | NDArray, row: int, col: int, is_index: bool = True
    ) -> NDArray | tuple:
        """Gets a block from the data structure.

        This is supposed to be a low-level method that does not perform
        any checks on the input. These are handled by the block indexer.
        The index is assumed to already be renormalized.

        Parameters
        ----------
        arg : tuple | NDArray
            The index of the stack or a view of the data stack. The
            is_index flag indicates whether the argument is an index or
            a view.
        row : int
            Row index of the block.
        col : int
            Column index of the block.
        is_index : bool, optional
            Whether the argument is an index or a view. Default is True.

        Returns
        -------
        block : NDArray | tuple[NDArray, NDArray, NDArray]
            The block at the requested index. This is an array of shape
            `(*local_stack_shape, block_sizes[row], block_sizes[col])` if
            `return_dense` is True, otherwise it is a tuple of arrays
            `(rows, cols, data)`.

        """
        if self.symmetry and (col < row):
            block = self._get_block(arg, row=col, col=row, is_index=is_index)
            return xp.ascontiguousarray(self.symmetry_op(block.swapaxes(-1, -2)))

        if is_index:
            data_stack = self.data[*arg]
        else:
            data_stack = arg

        block_slice = self._get_block_slice(row, col)

        if not self.return_dense:
            if self.symmetry:
                # TODO: If really needed, this will need some more thinking.
                raise NotImplementedError(
                    "Sparse blocks with symmetry not implemented."
                )
            if block_slice.start is None and block_slice.stop is None:
                # No data in this block, return an empty block.
                return xp.empty(0), xp.empty(0), xp.empty(data_stack.shape[:-1] + (0,))

            rows = self.rows[block_slice] - self.local_block_offsets[row]
            cols = self.cols[block_slice] - self.local_block_offsets[col]

            return rows, cols, data_stack[..., block_slice]

        block = xp.zeros(
            data_stack.shape[:-1]
            + (int(self.local_block_sizes[row]), int(self.local_block_sizes[col])),
            dtype=self.dtype,
        )
        if block_slice.start is None and block_slice.stop is None:
            # No data in this block, return an empty block.
            return block

        dsdbcoo_kernels.densify_block(
            block,
            self.rows,
            self.cols,
            data_stack,
            block_slice,
            self.local_block_offsets[row],
            self.local_block_offsets[col],
        )
        if self.symmetry and (col == row):
            block += self.symmetry_op(block.swapaxes(-1, -2))
            block[..., *xp.diag_indices(block.shape[-1])] /= 2

        return block

    def _get_sparse_block(
        self,
        arg: tuple | NDArray,
        row: int,
        col: int,
        is_index: bool = True,
    ) -> sparse.spmatrix | tuple:
        """Gets a block from the data structure in a sparse representation.

        This is supposed to be a low-level method that does not perform
        any checks on the input. These are handled by the block indexer.
        The index is assumed to already be renormalized.

        Parameters
        ----------
        arg : tuple | NDArray
            The index of the stack or a view of the data stack. The
            is_index flag indicates whether the argument is an index or
            a view.
        row : int
            Row index of the block.
        col : int
            Column index of the block.
        is_index : bool, optional
            Whether the argument is an index or a view. Default is True.

        Returns
        -------
        block : spmatrix | tuple
            The block at the requested index. It is a sparse
            representation of the block.

        """
        if self.symmetry:
            # TODO: If needed, this will need some more thinking.
            raise NotImplementedError("Sparse blocks with symmetry not implemented.")

        if is_index:
            data_stack = self.data[*arg]
        else:
            data_stack = arg

        block_slice = self._get_block_slice(row, col)

        if block_slice.start is None and block_slice.stop is None:
            # No data in this block, return an empty block.
            return xp.empty(data_stack.shape[:-1] + (0,)), (xp.empty(0), xp.empty(0))

        rows = self.rows[block_slice] - self.local_block_offsets[row]
        cols = self.cols[block_slice] - self.local_block_offsets[col]
        return data_stack[..., block_slice], (rows, cols)

    @profiler.profile(level="debug")
    def _set_block(
        self,
        arg: tuple | NDArray,
        row: int,
        col: int,
        block: NDArray,
        is_index: bool = True,
    ) -> None:
        """Sets a block throughout the stack in the data structure.

        The index is assumed to already be renormalized.

        Parameters
        ----------
        arg : tuple | NDArray
            The index of the stack or a view of the data stack. The
            is_index flag indicates whether the argument is an index or
            a view.
        row : int
            Row index of the block.
        col : int
            Column index of the block.
        block : NDArray
            The block to set. This must be an array of shape
            `(*local_stack_shape, block_sizes[row], block_sizes[col])`.
        is_index : bool, optional
            Whether the argument is an index or a view. Default is True.

        """
        if self.symmetry and (col < row):
            # TODO: Probably worth testing if the block is symmetric.
            self._set_block(
                arg,
                row=col,
                col=row,
                block=self.symmetry_op(block.swapaxes(-1, -2)),
                is_index=is_index,
            )
            return

        if is_index:
            data_stack = self.data[*arg]
        else:
            data_stack = arg

        block_slice = self._get_block_slice(row, col)
        if block_slice.start is None and block_slice.stop is None:
            # No data in this block, nothing to do.
            return

        dsdbcoo_kernels.sparsify_block(
            block,
            self.rows[block_slice] - self.local_block_offsets[row],
            self.cols[block_slice] - self.local_block_offsets[col],
            data_stack[..., block_slice],
        )

    @profiler.profile(level="debug")
    def _check_commensurable(self, other: "DSDBCOO") -> None:
        """Checks if the other matrix is commensurate."""
        if not isinstance(other, DSDBCOO):
            raise TypeError("Can only add DSDBCOO matrices.")

        if self.shape != other.shape:
            raise ValueError("Matrix shapes do not match.")

        if np.any(self.block_sizes != other.block_sizes):
            raise ValueError("Block sizes do not match.")

        if xp.any(self.rows != other.rows):
            raise ValueError("Row indices do not match.")

        if xp.any(self.cols != other.cols):
            raise ValueError("Column indices do not match.")

    def __iadd__(self, other: "DSDBCOO | sparse.spmatrix") -> "DSDBCOO":
        """In-place addition of two DSDBCOO matrices."""

        if sparse.issparse(other):

            csr = other.tocsr()
            self.data += csr[
                self.rows + self.global_block_offset,
                self.cols + self.global_block_offset,
            ]
            return self

        if self.symmetry != other.symmetry or self.symmetry_op != other.symmetry_op:
            raise ValueError(
                "Symmetry and symmetry_op must match for in-place addition."
            )

        self._check_commensurable(other)
        self._data += other._data
        return self

    def __isub__(self, other: "DSDBCOO | sparse.spmatrix") -> "DSDBCOO":
        """In-place subtraction of two DSDBCOO matrices."""
        if sparse.issparse(other):

            csr = other.tocsr()
            self.data -= csr[
                self.rows + self.global_block_offset,
                self.cols + self.global_block_offset,
            ]
            return self

        if self.symmetry != other.symmetry or self.symmetry_op != other.symmetry_op:
            raise ValueError(
                "Symmetry and symmetry_op must match for in-place substraction."
            )

        self._check_commensurable(other)
        self._data -= other._data
        return self

    def __neg__(self) -> "DSDBCOO":
        """Negation of the data."""
        return DSDBCOO(
            data=-self.data,
            rows=self.rows,
            cols=self.cols,
            block_sizes=self.block_sizes,
            global_stack_shape=self.global_stack_shape,
            return_dense=self.return_dense,
            symmetry=self.symmetry,
            symmetry_op=self.symmetry_op,
        )

    @DSDBSparse.block_sizes.setter
    def block_sizes(self, block_sizes: NDArray) -> None:
        """Sets new block sizes for the matrix.

        Parameters
        ----------
        block_sizes : NDArray
            The new block sizes.

        """
        block_sizes = np.asarray(block_sizes, dtype=np.int32)

        if self.distribution_state == "nnz":
            raise NotImplementedError(
                "Cannot reassign block-sizes when distributed through nnz."
            )

        num_blocks = len(block_sizes)
        if num_blocks in self._block_config and num_blocks == self.num_blocks:
            return

        if sum(block_sizes) != self.shape[-1]:
            raise ValueError("Block sizes must sum to matrix shape.")

        block_section_sizes, __ = get_section_sizes(len(block_sizes), comm.block.size)
        block_section_offsets = np.hstack(([0], np.cumsum(block_section_sizes)))

        local_block_sizes = block_sizes[block_section_offsets[comm.block.rank] :]
        if sum(local_block_sizes[: block_section_sizes[comm.block.rank]]) != sum(
            self.local_block_sizes[: self.num_local_blocks]
        ):
            raise ValueError(
                f"Block sizes {block_sizes} are inconsistent with the current distribution."
            )

        # Check if configuration already exists.
        if num_blocks in self._block_config:
            # Compute canonical ordering of the matrix.
            inds_bcoo2canonical = xp.lexsort(xp.vstack((self.cols, self.rows)))

            if self._block_config[num_blocks].inds_canonical2block is None:
                canonical_rows = self.rows[inds_bcoo2canonical]
                canonical_cols = self.cols[inds_bcoo2canonical]
                # Compute the index for sorting by the new block-sizes.
                inds_canonical2bcoo = dsdbcoo_kernels.compute_block_sort_index(
                    canonical_rows, canonical_cols, local_block_sizes
                )
                self._block_config[num_blocks].inds_canonical2block = (
                    inds_canonical2bcoo
                )

            # Mapping directly from original block-ordering to the new
            # block-ordering is achieved by chaining the two mappings.
            inds_bcoo2bcoo = inds_bcoo2canonical[
                self._block_config[num_blocks].inds_canonical2block
            ]
            data = self.data.reshape(-1, self.data.shape[-1])
            for stack_idx in range(data.shape[0]):
                data[stack_idx] = data[stack_idx, inds_bcoo2bcoo]
            self.rows = self.rows[inds_bcoo2bcoo]
            self.cols = self.cols[inds_bcoo2bcoo]
            self.rows_nnz = (
                self.rows[
                    self.nnz_section_offsets[
                        comm.stack.rank
                    ] : self.nnz_section_offsets[comm.stack.rank + 1]
                ]
                + self.global_block_offset
            )
            self.cols_nnz = (
                self.cols[
                    self.nnz_section_offsets[
                        comm.stack.rank
                    ] : self.nnz_section_offsets[comm.stack.rank + 1]
                ]
                + self.global_block_offset
            )

            self.block_section_offsets = block_section_offsets
            # We need to know our local block sizes and those of all
            # subsequent ranks.
            self.num_local_blocks = block_section_sizes[comm.block.rank]
            self.local_block_sizes = block_sizes[
                self.block_section_offsets[comm.block.rank] :
            ]
            self.local_block_offsets = np.hstack(
                ([0], np.cumsum(self.local_block_sizes))
            )

            self.num_blocks = num_blocks
            return

        # Compute canonical ordering of the matrix.
        inds_bcoo2canonical = xp.lexsort(xp.vstack((self.cols, self.rows)))
        canonical_rows = self.rows[inds_bcoo2canonical]
        canonical_cols = self.cols[inds_bcoo2canonical]
        # Compute the index for sorting by the new block-sizes.
        inds_canonical2bcoo = dsdbcoo_kernels.compute_block_sort_index(
            canonical_rows, canonical_cols, local_block_sizes
        )
        # Mapping directly from original block-ordering to the new
        # block-ordering is achieved by chaining the two mappings.
        inds_bcoo2bcoo = inds_bcoo2canonical[inds_canonical2bcoo]
        data = self.data.reshape(-1, self.data.shape[-1])
        for stack_idx in range(data.shape[0]):
            data[stack_idx] = data[stack_idx, inds_bcoo2bcoo]
        self.rows = self.rows[inds_bcoo2bcoo]
        self.cols = self.cols[inds_bcoo2bcoo]
        self.rows_nnz = (
            self.rows[
                self.nnz_section_offsets[comm.stack.rank] : self.nnz_section_offsets[
                    comm.stack.rank + 1
                ]
            ]
            + self.global_block_offset
        )
        self.cols_nnz = (
            self.cols[
                self.nnz_section_offsets[comm.stack.rank] : self.nnz_section_offsets[
                    comm.stack.rank + 1
                ]
            ]
            + self.global_block_offset
        )

        # Update the block sizes and offsets as in the initializer.
        self.num_blocks = num_blocks

        block_offsets = np.hstack(([0], np.cumsum(block_sizes)))

        self.block_section_offsets = block_section_offsets
        # We need to know our local block sizes and those of all
        # subsequent ranks.
        self.num_local_blocks = block_section_sizes[comm.block.rank]
        self.local_block_sizes = block_sizes[
            self.block_section_offsets[comm.block.rank] :
        ]
        self.local_block_offsets = np.hstack(([0], np.cumsum(self.local_block_sizes)))
        self._add_block_config(num_blocks, block_sizes, block_offsets)
        self._block_config[num_blocks].inds_canonical2block = inds_canonical2bcoo

    @profiler.profile(level="api")
    def spy(self) -> tuple[NDArray, NDArray]:
        """Returns the row and column indices of the non-zero elements.

        This is essentially the same as converting the sparsity pattern
        to coordinate format. The returned sparsity pattern is not
        sorted.

        Returns
        -------
        rows : NDArray
            Row indices of the non-zero elements.
        cols : NDArray
            Column indices of the non-zero elements.

        """
        rows = comm.block._mpi_comm.allgather(self.rows)
        cols = comm.block._mpi_comm.allgather(self.cols)
        rank_max = xp.hstack(
            comm.block._mpi_comm.allgather(
                sum(self.local_block_sizes[: self.num_local_blocks])
            )
        )
        rank_offset = xp.hstack(([0], xp.cumsum(rank_max)))

        for i in range(1, comm.block.size):
            rows[i] += rank_offset[i]
            cols[i] += rank_offset[i]
        return xp.hstack(rows), xp.hstack(cols)

    def symmetrize(self, op: Callable[[NDArray, NDArray], NDArray] = xp.add) -> None:
        """Symmetrizes the matrix with a given operation.

        This is done by setting the data to the result of the operation
        applied to the data and its conjugate transpose.

        Note
        ----
        This assumes that the matrix's sparsity pattern is symmetric.

        Parameters
        ----------
        op : callable, optional
            The operation to apply to the data and its conjugate
            transpose. Default is `xp.add`, so that the matrix is
            Hermitian after calling.

        """
        if self.symmetry:
            # Already symmetric, nothing to do.
            return

        if self.distribution_state == "nnz":
            raise NotImplementedError("Cannot symmetrize when distributed through nnz.")

        if not hasattr(self, "_inds_bcoo2bcoo_t"):
            # Transpose.
            rows_t, cols_t = self.cols, self.rows

            # Canonical ordering of the transpose.
            inds_bcoo2canonical_t = xp.lexsort(xp.vstack((cols_t, rows_t)))
            canonical_rows_t = rows_t[inds_bcoo2canonical_t]
            canonical_cols_t = cols_t[inds_bcoo2canonical_t]

            # Compute index for sorting the transpose by block.
            inds_canonical2bcoo_t = dsdbcoo_kernels.compute_block_sort_index(
                canonical_rows_t, canonical_cols_t, self.local_block_sizes
            )

            # Mapping directly from original ordering to transpose
            # block-ordering is achieved by chaining the two mappings.
            inds_bcoo2bcoo_t = inds_bcoo2canonical_t[inds_canonical2bcoo_t]

            # Cache the necessary objects.
            self._inds_bcoo2bcoo_t = inds_bcoo2bcoo_t

        data = self.data.reshape(-1, self.data.shape[-1])
        for stack_idx in range(data.shape[0]):
            data[stack_idx] = 0.5 * op(
                data[stack_idx], data[stack_idx, self._inds_bcoo2bcoo_t].conj()
            )

    @classmethod
    @profiler.profile(level="api")
    def zeros_like(cls, dsdbsparse: "DSDBCOO") -> "DSDBCOO":
        """Creates a new DSDBCOO matrix with the same shape and dtype.

        All non-zero elements are set to zero, but the sparsity pattern
        is preserved.

        Parameters
        ----------
        dsdbcoo : DSDBCOO
            The matrix to copy the shape and dtype from.

        Returns
        -------
        dsdbcoo
            The new DSDBCOO matrix.

        """
        # deepcopy can lead to issues with cupy
        # segfaults in the tests observed
        if dsdbsparse._data is None:
            raise ValueError("Cannot create zeros_like from deallocated DSDBSparse.")

        out = cls(
            data=dsdbsparse.data,
            rows=dsdbsparse.rows,
            cols=dsdbsparse.cols,
            block_sizes=dsdbsparse.block_sizes,
            global_stack_shape=dsdbsparse.global_stack_shape,
            return_dense=dsdbsparse.return_dense,
            symmetry=dsdbsparse.symmetry,
            symmetry_op=dsdbsparse.symmetry_op,
        )
        out._data[:] = 0
        return out

    @classmethod
    @profiler.profile(level="api")
    def from_sparray(
        cls,
        sparray: sparse.spmatrix,
        block_sizes: NDArray,
        global_stack_shape: tuple,
        symmetry: bool | None = False,
        symmetry_op: Callable = xp.conj,
    ) -> "DSDBCOO":
        """Constructs a DSDBCOO matrix from a COO matrix.

        This essentially distributes the COO matrix across the
        participating ranks.

        Parameters
        ----------
        sparray : sparse.coo_matrix
            The COO matrix to distribute.
        block_sizes : NDArray
            The block sizes of the block-sparse matrix.
        global_stack_shape : tuple
            The global shape of the stack.
        symmetry : bool, optional
            Whether to enforce symmetry in the matrix. Default is False.
        symmetry_op : callable, optional
            The operation to use for the symmetry. Default is
            `xp.conj`.

        Returns
        -------
        DSDBCOO
            The new DSDBCOO matrix.

        """

        if comm.stack is None or comm.block is None:
            raise ValueError("Communicators must be initialized.")

        # We only distribute the first dimension of the stack.
        stack_section_sizes, __ = get_section_sizes(
            global_stack_shape[0], comm.stack.size
        )
        section_size = stack_section_sizes[comm.stack.rank]
        local_stack_shape = (section_size,) + global_stack_shape[1:]

        # coo: sparse.coo_matrix = sparray.tocoo().copy()
        coo: sparse.coo_matrix = sparray.tocoo()

        # Canonicalizes the COO format.
        if symmetry:
            coo = sparse.triu(coo, format="coo")

        if not coo.has_canonical_format:
            coo.sum_duplicates()

        # Compute the block-sorting index.
        block_sort_index = dsdbcoo_kernels.compute_block_sort_index(
            coo.row, coo.col, block_sizes
        )

        _data = coo.data[block_sort_index]
        _rows = coo.row[block_sort_index]
        _cols = coo.col[block_sort_index]

        # Determine the local slice of the data.
        # NOTE: This is arrow-wise partitioning.
        # TODO: Allow more options, e.g., block row-wise partitioning.
        section_sizes, __ = get_section_sizes(len(block_sizes), comm.block.size)
        section_offsets = np.hstack(([0], np.cumsum(section_sizes)))

        block_offsets = np.hstack(([0], np.cumsum(block_sizes)))
        start_idx = block_offsets[section_offsets[comm.block.rank]]
        end_idx = block_offsets[section_offsets[comm.block.rank + 1]]
        local_mask = ((_rows >= start_idx) & (_cols >= start_idx)) & (
            (_rows < end_idx) | (_cols < end_idx)
        )

        data = xp.zeros(
            local_stack_shape + (int(local_mask.sum()),), dtype=coo.data.dtype
        )
        data[..., :] = _data[local_mask]
        rows = _rows[local_mask] - start_idx
        cols = _cols[local_mask] - start_idx

        return cls(
            data=data,
            rows=rows,
            cols=cols,
            block_sizes=block_sizes,
            global_stack_shape=global_stack_shape,
            symmetry=symmetry,
            symmetry_op=symmetry_op,
        )

    def to_dense(self):
        """Converts the local data to a dense array.

        This is dumb, unless used for testing and debugging.

        Returns
        -------
        arr : NDArray
            The dense array of shape `(*local_stack_shape, *shape)`.

        """
        if self.distribution_state != "stack":
            raise ValueError(
                "Conversion to dense is only supported in 'stack' distribution state."
            )

        # Gather rows, cols, and data.
        rows = comm.block._mpi_comm.allgather(self.rows)
        cols = comm.block._mpi_comm.allgather(self.cols)
        data = xp.concatenate(comm.block._mpi_comm.allgather(self.data), axis=-1)

        rank_max = xp.hstack(
            comm.block._mpi_comm.allgather(
                sum(self.local_block_sizes[: self.num_local_blocks])
            )
        )
        rank_offset = xp.hstack(([0], xp.cumsum(rank_max)))

        for i in range(1, comm.block.size):
            rows[i] += rank_offset[i]
            cols[i] += rank_offset[i]

        rows = xp.hstack(rows)
        cols = xp.hstack(cols)

        arr = xp.zeros(self.shape, dtype=self.dtype)
        arr[..., rows, cols] = data

        if self.symmetry:
            arr += self.symmetry_op(arr.swapaxes(-1, -2))
            arr[..., *xp.diag_indices(arr.shape[-1])] /= 2

        return arr